Shearer Property Group

Cathedral Lanes, Coventry
Servicing Management Plan

30822/D02a
December 2016
Contents

1 Introduction..1
2 Existing servicing arrangement..2
3 Proposed servicing arrangement..3
4 Service Trip generation ...5
5 Servicing Management Plan objectives and measures ..9
6 Servicing during construction ..11
7 Summary and conclusion..12

Figures

1 Existing servicing arrangement
2 Proposed servicing arrangement
3 Swept path analysis of a 4.6 ton transit van
4 Swept path analysis of a 10m rigid HGV
5 Swept path analysis of a 16.5m articulated HGV
6 Swept path analysis of a large refuse vehicle
1 INTRODUCTION

1.1.1 Cathedral Lanes, Coventry has already undergone Phase 1 redevelopment which has re-invigorated the shop fronts and provided additional active frontage and an improved food and beverage offer within the centre.

1.1.2 As part of the proposed Phase 2 redevelopment of Cathedral Lanes the layout is being further rationalised. This includes replacing some of the existing A1 use with A3 use and utilising the under-used elements of the development, including the current service area.

1.1.3 This Servicing Management Plan (SMP) explains the current and proposed servicing arrangements and reviews the current and expected quantum of delivery trips associated with the scheme. Whilst the difference in the number of servicing trips is expected to be minimal, it includes a number of initiatives that can be used to better manage the service area and reduce conflict and congestion.

1.1.4 The remainder of this report comprises the following chapters:

- Chapter 2 – The existing servicing arrangements
- Chapter 3 – The proposed servicing arrangements
- Chapter 4 – Servicing trip generation
- Chapter 5 – SMP objectives and measures
- Chapter 6 – Servicing during construction
- Chapter 7 – Summary
2 EXISTING SERVICING ARRANGEMENT

2.1 Existing service area layout

2.1.1 The scheme is currently serviced from Pepper Lane, accessed off the High Street. Service vehicles do not approach from the east due to the narrow nature of the surrounding roads. Pepper Lane is included within the town centre pedestrianised area and has parking (including disabled parking) on the northern side of the road, adjacent to the centre. Cars utilising these bays appear to generally approach from Hay lane / Bayley Lane to the east. Service vehicles access the service area by reversing off Pepper Lane, before exiting in a forward gear in the direction they arrived from.

2.1.2 The service area comprises a large area of hard standing and includes an area that is currently used for the compactor and as a bin store as indicated in Figure 1. The area to the east of the compactor is used by all delivery vehicles servicing the shopping centre.

2.1.3 The service area is inefficiently laid out and is often used by smaller vans which park alongside the adjacent building for extended periods, which due to the size of the yard does not actually hinder deliveries. The bin store resembles a roofless temporary structure and stores all the centres bins.

2.1.4 The service area is currently capable of accommodating one articulated vehicle or two / three smaller service vehicles simultaneously.
3 PROPOSED SERVICING ARRANGEMENT

3.1 Proposed arrangement

3.1.1 The scheme will continue to be serviced from Pepper Lane, accessed off the High Street as per the existing situation. The parking bays and road markings will remain unchanged.

3.1.2 As well as rationalising the internal layout, the proposals include locating a new A3 unit on an element of the existing service area, currently used as the bin store and waste compactor area. The bin store has been relocated within the development, albeit still with easy level access to the service area where the bins will be collected.

3.1.3 There is still adequate space to the east of the proposed unit to accommodate two servicing bays, one of which can accept rigid lorries up to 10m in length and the other transit van sized vehicles. This arrangement is shown in Figure 2.

3.1.4 Based on BCSC “Servicing Areas for Shopping Centres 2013”, the typical number of service bays required range from 0.5 (most highly managed) to 2.9 (less intensively managed) service bays per 10,000 sqm. On this basis, one to two bays would be required for the development. A minimum of two bays should be provided where there is likely to be a lower level of management control. This would suggest that the provision of two loading bays within the development should be more than sufficient.

3.2 Vehicle tracking

3.2.1 The service yard has been tracked with a variety of vehicles to ensure that the yard remains accessible and that vehicles can continue to enter and exit Pepper Lane as per the current situation.

3.2.2 Figure 3 shows the swept path of a 4.6 ton transit van accessing the service area whilst there is already a 10m rigid vehicle parked. This size vehicle is expected to form the majority of service trips.

3.2.3 Figure 4 shows the swept path of a 10m rigid vehicle accessing the service area whilst there is already a 4.6 ton transit van parked. This manoeuvre is similar to how a vehicle this size currently accesses the service area.
3.2.4 Figure 5 shows the swept path of a 16.5m articulated vehicle accessing the service area. Whilst this manoeuvre requires the whole service yard this size vehicle it is only expected to be required to service the Wilko unit. This currently, and will continue to take place well outside of normal servicing times (usually between 03.00 and 05.00 AM) – resulting in no conflict. This manoeuvre is similar to how the HGV currently accesses the service yard and does not require the body of the vehicle to over-swing the footway.

3.2.5 The swept path manoeuvre of the large refuse vehicle is actually easier that in the existing situation as the bin store has been relocated into a number of smaller stores within the building, meaning the vehicle does not need to reverse up to the existing store. The track is shown in Figure 6 and it has been assumed that the vehicle will be able to access the service yard out of normal servicing hours when the bays are empty in a similar manor to the existing situation.

3.3 Summary

3.3.1 Following the relocation of the existing refuse collection facilities and the provision of a new A3 unit the service area continues to be able to accommodate up to two service vehicles simultaneously. The vehicles will continue to access the service area in a similar manner to the existing situation and there will therefore be no detrimental impact on the public highway or the ability to service the site.
4 SERVICE TRIP GENERATION

4.1 Existing service trip generation

4.1.1 The centre currently comprises 7,765m² GIA, split across three land uses as follows:

- 4,827m² A1 retail
- 58m² A2 retail
- 1,416m² A3 café / restaurant
- 1,464m² ancillary areas

A1/A2 Retail service trips

4.1.2 When assessing the number of servicing trips associated with the retail element there is no up to date servicing data on the national TRICS database. We therefore initially reviewed a number of sources to ascertain a suitable trip rate.

4.1.3 The Rowlands and Wardley paper on ‘Shopping Centres: Deliveries and Servicing’ illustrates the difference in daily service vehicle trip rates based on the different retail types. The data is based on a survey in Central Milton Keynes (CMK) where there is a wide range of different retail types available and the paper also included a comparison with the trip rates in ‘Designing for Deliveries’ by the Freight Transport Association. An extract is provided in Table 1 below.

<table>
<thead>
<tr>
<th>Retail use</th>
<th>CMK trip rates</th>
<th>FTA trip rates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Confectioners etc</td>
<td>0.734</td>
<td>1.0-2.5</td>
</tr>
<tr>
<td>Clothing etc</td>
<td>0.264</td>
<td>0.1-0.3</td>
</tr>
<tr>
<td>Household goods</td>
<td>0.980</td>
<td>0.1-2.0</td>
</tr>
<tr>
<td>Mixed retail</td>
<td>0.407</td>
<td>0.2-0.8</td>
</tr>
<tr>
<td>Service trader</td>
<td>0.673</td>
<td>0.1-0.7</td>
</tr>
</tbody>
</table>

4.1.4 The above table shows how retail deliveries vary depending on the type of A1 retail use. Based on the above comparison of retail servicing trip rates using these separate data sources, a trip rate of 0.80 trips / 100m² could be considered reasonable for flexible retail uses.

4.1.5 On this basis, the existing 4,827m² of retail would generate 38 vehicle trips. Whilst this trip rate may be applicable in larger shopping centres it appears to
over calculate the servicing trips and does not take into account that nearly half of the floor area is actually one Wilko store. In light of this we have therefore assessed the servicing trips from first principles. We feel this is a more sensible approach as the results will not be skewed by the proposed reduction in retail floor-space leading to a considerable drop in overall servicing trips in the future scenario.

4.1.6 Of the 4,826m² of retail 2,198m² is associated with the Wilko unit which is currently serviced by one articulated vehicle each morning between 3-5am. The remaining six A1 retail units would on average have between 1-2 deliveries a day, usually in vans and small lorries. The A2 use (a currency exchange) is not expected to have daily deliveries. On this basis the number of deliveries associated with the retail element has therefore been calculated as between 7-13 deliveries.

A3 service trips

4.1.7 The five A3 units can expect to generate up to two servicing trips each a day. Depending on their expected peak hours of trade they usually require either early morning (for the lunch time trade) or afternoon (for the evening trade) deliveries of fresh food and beverages. On this basis an additional ten servicing trips are required.

Existing service trips

4.1.8 The existing site necessitates up to 23 deliveries a day. These are spread across the whole day and include very early morning deliveries. With the exclusion of the Wilko delivery, the service vehicles are generally in the service yard for less than 20 minutes. As noted in Chapter 2, the service area can accept two vehicles simultaneously, therefore accommodating up to six vehicles an hour. All of the deliveries could therefore be undertaken in a four hour time slot. Given that the deliveries take place over at least a twelve hour period there is ample servicing provision provided and the level of conflict between service vehicles is low.
4.2 Proposed service trip generation

4.2.1 The proposal comprises 8,374m² GIA, split across four land uses as follows:

- 2,198m² A1 retail
- 58m² A2 retail
- 4,361m² A3 café / restaurant
- 613m² D2 Leisure
- 1,144m² ancillary areas

A1/2 Retail service trips

4.2.2 The remaining 2,198m² of retail comprises the existing Wilko unit which is currently serviced by one articulated vehicle each morning between 3-5am. The A2 use (a currency exchange) is not expected to have daily deliveries.

A3 service trips

4.2.3 The ten A3 units can expect to generate up to two servicing trips each a day. Depending on their expected peak hours of trade they usually require either early morning (for the lunch time trade) or afternoon (for the evening trade) deliveries of fresh food and beverages. On this basis twenty servicing trips are required.

D2 service trips

4.2.4 The Leisure use is relatively modest in size, and is unlikely to require servicing on a daily basis. However for the purpose of this assessment it has been assumed that there will be one service trip a day.

Proposed service trips

4.2.5 The proposed site is therefore expected to generate approximately 22 deliveries a day. These are spread across the whole day and would include very early morning deliveries. As per the existing situation, with the exclusion of the Wilko delivery vehicle, the service vehicles are expected to take no longer than 20 minutes to unload. As noted in Chapter 3, the rationalised service area can accept two vehicles simultaneously, therefore accommodating up to six vehicles.
an hour. All of the deliveries could therefore be undertaken in a four hour time slot. Given that the deliveries take place over at least a twelve hour period there is ample servicing provision provided and the level of conflict between service vehicles is low.

4.2.6 Given that the number of deliveries is expected to fall slightly and the service area can continue to accommodate two vehicles there is no reason why the service area should not continue to operate in a satisfactory manner.

4.3 Sensitivity test

4.3.1 Apart from the change in use from retail to food and beverage, the reason the number of servicing trips is not increasing even though the floor area is getting larger is that the rationalisation of the development is resulting in larger more efficient units rather than a large increase in unit numbers, and for units of this type the number of deliveries is fairly consistent regardless of the unit size, possibly only resulting in a possible increase in the size of vehicles used.

4.3.2 However the TRICS Research and Development Technical Note on Servicing Vehicle Requirements (2006) reviewed a range of ‘Mixed Shopping Malls’ and ‘Mixed Use’ land use groups (A1, A3, D1 and D2) and achieved an average daily trip rate of 0.62 vehicles / 100m². Whilst, in a similar manner to the previous floor area service trip generation exercise, we feel that the results are better suited to larger developments if it was applied to this scheme the following results are obtained.

- Existing scheme (6,266m²) – 39 servicing trips
- Proposed scheme (7,174m²) – 45 servicing trips

4.3.3 Given that over a twelve hour period the two bays can accommodate 72 servicing trips it is clear that there is adequate service provision in both scenarios.
5 SERVICING MANAGEMENT PLAN OBJECTIVES AND MEASURES

5.1.1 A Servicing Management Plan provides a framework for effectively managing freight vehicle movements to and from the site, identifying measures which will minimise the impact of deliveries. It can also help to reduce fuel costs, CO2 emissions, congestion and accidents, as well as help to identify where deliveries can be reduced, rescheduled or consolidated.

5.2 Aims and objectives

5.2.1 The objective of this SMP is to develop a document which will seek to support a sustainable and well managed development with regards to deliveries and servicing. This SMP will therefore seek to achieve the following objectives:

- Demonstrate that goods and services can be delivered, and waste removed, in a safe, efficient and environmentally-friendly way;
- Identify deliveries that could be reduced, re-timed or even consolidated, particularly during busy periods;
- Improve the reliability of deliveries to the site;
- Reduce the operating costs of building occupants and freight companies; and
- Reduce the impact of freight activity on local residents and the environment.

5.3 Measures to minimise impact of servicing movements

5.3.1 All deliveries and servicing vehicles can be accommodated within the site in a similar manner to the existing situation, and therefore it is not expected that there will be any significant impact on the local highway network. However, measures could be implemented to minimise any impact of delivery and servicing movements. This could include:

- Occupiers of the retail units should manage their deliveries effectively and minimise the number of vehicles arriving at the same time;
- Occupiers should have staff available to receive the deliveries to minimise vehicle loading time;
• In instances where common suppliers are used, occupiers will also be encouraged to co-ordinate deliveries wherever possible;

• All ‘Back of House’ staff should receive appropriate training related to the delivery and servicing processes and procedures in operation on the site;

• Limiting deliveries to the A3 café and restaurants to not clash with the A1 delivery;

• Delivery vehicles should be low-emission vehicles, in line with government policy;

• Occupiers will be encouraged to contract suppliers registered with a best practice scheme, such as the Freight Operator Recognition Scheme (FORS)

5.4 Summary

5.4.1 Deliveries to the Phase 2 scheme are not expected to have a significant impact on the operation of the service yard or on the public highway but a range of measures could be implemented to ensure that all deliveries and servicing movements can be undertaken as efficiently as possible.
6 SERVICING DURING CONSTRUCTION

6.1.1 Although the servicing arrangements that take place during construction will be dealt with in more detail in a Construction Management Plan the following points should be noted:

- The works will be phased in order to minimise impact on the existing servicing arrangement by keeping the service area operational for as long as possible.

- When the service area is being utilised for construction, deliveries will be able to take place from Broadgate, with goods being trollied into the front of the building.

- During this period the timing of the deliveries will be managed to minimise impact on the pedestrian area surrounding the centre.
7 SUMMARY AND CONCLUSION

7.1.1 As part of the proposed Phase 2 redevelopment of the Cathedral Lanes shopping centre the layout is being further rationalised. This includes replacing some of the existing A1 use with A3 use and utilising the under-used elements of the development, including the current service area.

7.1.2 As well as rationalising the internal layout, the proposals include locating a new A3 unit on an element of the existing service area, currently used for waste storage. The bin store has been relocated within the development, albeit still with easy level access to the service area where the bins will be collected. The scheme will continue to be serviced from Pepper Lane, accessed off the High Street as per the existing situation.

7.1.3 There is still adequate space to the east of the proposed unit to accommodate two servicing bays, one of which can accept rigid lorries up to 10m in length and the other transit van sized vehicles. This level of provision accords with the latest BCSC guidance.

7.1.4 The service yard has been tracked with a variety of vehicles to ensure that the yard remains accessible and that vehicles can continue to enter and exit Pepper Lane as per the current situation and there will therefore be no detrimental impact on the public highway or the ability to service the site.

7.1.5 The proposed site is expected to generate a similar number of deliveries as the existing situation (approximately 22 deliveries a day). These are spread across the whole day and would include very early morning deliveries. Given that the deliveries can take place over at least a twelve hour period there is ample servicing provision provided and the level of conflict between service vehicles is low. There is therefore no reason why the service area should not continue to operate in a satisfactory manner.

7.1.6 All deliveries and servicing vehicles can be accommodated within the site in a similar manner to the existing situation, and therefore it is not expected that there will be any significant impact on the local highway network. However, measures are set out in this document which could be implemented to minimise any impact of delivery and servicing movements. In light of this the proposals should be acceptable from a transport perspective.
Figures
Existing arrangement

Figure 1
Swept path analysis of 4.6t Transit van

Figure 3
Swept path analysis of 10.0m rigid HGV

Figure 4
Swept path analysis of 16.5m articulated HGV

Figure 5
Swept path analysis of Large refuse vehicle

Figure 6