Planning Condition 13 – Construction Method Statement

Bowmer and Kirkland (B&K) are the Construction Project Managers for the construction of the restaurant units approved under planning permission FUL/2012/2348. Condition 13 of that permission requires a Construction Method Statement to be produced and adhered to during the construction phase. The Contracts Manager for these works is Christian Parnell, of Bowmer and Kirkland.

Christian Parnell will be assigned to manage the whole project, throughout design, construction and defects liability period. The benefit to the client will be a single point of contact for the duration of the project, and that the same person will manage the process from commencement through to completion, maintaining continuity throughout the project.

Prior to commencing works on site, and to specifically address planning Condition 13, we set out below how we will deliver the project, in accordance with this Planning Condition as follows:

1. Vehicle parking for site operatives and visitors
2. Loading and unloading of plant and materials
3. The storage of plant and materials
4. The erection and maintenance of security hoarding including decorative displays and viewing panels for public viewing
5. Wheel washing facilities to plant, equipment and machinery
6. Measures to control the emission of dust and dirt during construction
7. A scheme for the recycling/depositing of waste resulting from construction works

1. Vehicle parking for site operatives

Due to the site constraints, we are unable to provide permanent parking for the key individuals of the site team and visitors within the confines of the site. However, we have identified the relevant number of spaces that we would be using within the existing car park of the Arena Park Shopping Centre, whilst we are carry out the construction phase of the project. These are identified within our Logistics Plan, shown at the rear of this document.

We always encourage our subcontractors to allow for offsite parking for their operatives, at the nearest authorised available parking venue, and commute to the site where possible. Where this is not possible by the nature of the workforce, we again encourage that the subcontractor supply or encourage the sharing of vehicles for their team members and their required tools, to minimise any disruption to our neighbouring stakeholders.

Parking arrangements are always of concern on this type of project, and this will be addressed between Paul Newbutt, Bowmer and Kirkland Project Manager, and the Arena Park Centre Manager, on a weekly basis.
2. Loading and Unloading of Materials

Main access to the development site for all deliveries is via A444 Phoenix Way.

All of our supply chain will be given a ‘pre-let’ prior to entering into contract with Bowmer and Kirkland which will clearly state the methodology of delivery plant, machinery, and materials to the site, with any time constraints as stated within the approved planning document, the route in which they will take, and the protocols that we will have in place for receiving such deliveries. There is a space allocated within the site for vehicles to stand and wait to be unloaded by our site Telehandler/forklift. This is shown on the Logistics Plan to the rear of this document.

This is supplemented with our full traffic management signage, which will include any pedestrian or vehicular diversions, contractor and delivery routes, and extremely importantly, the routes for existing tenants, employees and the public.

The largest volume of vehicle movement will be during the earthworks to the scheme to reduce the existing land levels in line with the proposed approved scheme. Approximately 600 no lorry loads of existing material will enter and exit the site via the A444 and measures will be put in place to stagger the daily movement and ensure vehicles are not parking on or blocking surrounding highway.

3. The storage of plant and materials

Due to the nature and the site constraints of this site, there will be very little materials stored within the site, and certainly no materials stored outside of the hoarding line. Materials will only be procured and delivered within a few days of those materials being installed as part of the works programme. These materials will be securely stored on clean, hard-core surfacing within, and below the hoarding line.

There will be elements of plant that will be parked within the confines of the site, but only for the duration of the works that they are associated with.

At all times, the access road to Network Rail will be kept free from the storage of any plant or materials.

4. The erection and maintenance of security hoarding including decorative displays and viewing panels for public viewing

It is our intention to erect site Heras fencing around the perimeter of the site, with the exception to the boundary adjacent to the Network Rail Line, where we will utilise the existing perimeter palisade fence as our site boundary fence line. Both of these will be fitted with anti-debris netting. However, prior to commencement of the project, we will inspect the existing Network Rail fence and infill any breaches in this structure with a Heras type fence.

The site office, welfare facility, staff and visitor parking will be located in an agreed location within the existing Arena Park car park, as shown on our Logistics Plan shown at the rear of this document.
There will be no facility for public viewing through the hoarding due to the site constraints, and location of the hoarding adjacent to the incoming road, as we consider that this location is not appropriate for public safety.

The site hoarding is inspected daily by Bowmer and Kirkland’s Site Manager for any defects. If any defects are found, these will be repaired immediately.

5. Wheel washing facilities to plant, equipment and machinery

Prior to any vehicles leaving the site, they will be inspected by Bowmer and Kirkland’s Site Forman for any defects associated with their wheels, tyres and undercarriage with regards to their physical appearance, and whether they are free from excessive dirt, mud and obstructions. If they are not free from any of these, then they will be mechanically cleaned to remove any dirt, mud or obstructions from their wheels and undercarriage, by a Bowmer and Kirkland operative. To supplement this operation, there will be a road sweeper engaged as required to clean the immediate roads in, and around the site.

The location of this “on-site” cleaning point is shown within our Logistics Plan to the rear of this document.

6. Measures to control the emission of dust and dirt during construction

Dust emissions and odours arising from a site can potentially annoy neighbours and even cause health risks at high concentrations. Under the Environmental Protection Act 1990 the Company has a duty to avoid causing a statutory nuisance due to creating dust that may affect the workforce, neighbours and the environment. Failure to do so is a criminal offence and may result in prosecution and an unlimited fine.

Bowmer & Kirkland have in place Health & Safety and Environmental procedures to ensure that the site team is fully aware of all those who may be affected by the work and to put in place control measures to minimise any nuisance or inconvenience.

Effective planning and management of dust control requires a thorough understanding of the construction programme, the operations and their likely impact due to the changing weather conditions. The control measures that will be introduced reflect the site team’s knowledge of the programme and site operations to combat dust.

To minimise the nuisance of dust generated by the construction operations the following operational constraints will be implemented:

- Haul routes to be located away from sensitive areas, if possible,
- Provide a length of paved road before the exit from the site,
- Where hard surfaced roads are constructed the roads will be regularly swept to prevent a build-up of dust and debris,
- Sweep public roads regularly when potential traffic movements containing soil, spoil, hardcore, concrete etc. are being taken in or out of the site,
- Ensure that all dust generating materials transported to and from site are covered by tarpaulins,
- Traffic speed on site to be lowered to prevent the generation of dust,
- Construction methods will be reviewed to limit the generation of dust i.e. wet cutting in lieu of dry cutting where practicable,
- Control of dust to be implemented on site by the use of a water bowser unit to dampen site access and haul roads,
- Plant and equipment to be selected to minimise the generation of dust,
- Dust migration to adjoining properties to be restricted by the use of debris netting fixed to all the perimeter fences,
- Store materials as far away as possible from sensitive boundaries, whenever possible,

During very dry conditions, consideration would be given to suspension of soil handling operations if wind speeds give rise to dust generation that could cause a nuisance to dust sensitive locations in the vicinity of the site, particularly during dry and windy conditions. Being aware of the impact of dust creating operations is key to good dust management. Having good communications, including on-site inductions, toolbox talks, notices, site briefings to staff etc. are therefore essential.
The monitoring of operations with the potential to cause airborne dust emissions will be regularly undertaken by the Project Manager or his appointed representative. This will predominantly take the form of personal visual assessments. All findings, including the prevailing weather conditions, will be recorded in a log book kept specifically for recording site conditions and events. As a minimum, entries in the log book would be made at least daily.

7. A scheme for the recycling/depositing of waste resulting from construction works

Waste Reduction

To emphasise the importance at corporate level of minimising waste through recycling, Bowmer & Kirkland have established a “Waste Reduction Policy” that forms a key part of the company’s strategy managing waste through Site Waste Management Plans (SWMP). This policy promotes the reduction of waste in order to minimise the amount of waste sent to landfill sites through the re-use, re-cycling and the responsible disposal of waste.

Bowmer & Kirkland have signed up to WRAP’s initiative of “Halving waste to Landfill”.

Bowmer & Kirkland approach waste management in accordance with the waste hierarchy:

Reduce:

Where possible waste is avoided. This may be achieved by the following means:

- Influencing the design to use standard sizes of materials by incorporating existing site materials into the scheme and through the use of modern methods of construction, e.g. off-site manufacture.
- Provide appropriate storage for materials on site to eliminate wasted product, this may be means of covered areas or sited away from plan movements and low spots which may gather water.

Re-Use:

Bowmer & Kirkland recognise that waste materials can be re-used on site or on other sites to prevent them entering the waste management chain. This may be achieved by the following means:

- All operatives are trained to report any off-cuts which can’t be used to the Site Manager before they are placed in a skip. The Site Manager will endeavour to get other trades to use the off-cuts.
- All excess materials are appropriately stored and collected from site for re-use on other projects.
- All packaging waste is returned to the supplier where practical, where this isn’t possible then Bowmer & Kirkland will endeavour to get items able to be re-used by other companies, e.g. pallets, collected for reuse.
- Where possible demolition waste is crushed on site into 6F2 and re-used as sub-base in the permanent works.
Where bulk materials, i.e. soils and demolition wastes, cannot be re-used on site then Bowmer & Kirkland endeavour to ensure these are used on other suitably licensed sites. This is achieved by considering requirements for other projects being conducted by Bowmer & Kirkland or other Main Contractor’s sites being worked on by our supply chain. Where these are not available then Bowmer & Kirkland will use waste brokers to try and find suitable sites for the materials to be re-used.

Recycle:

Bowmer & Kirkland endeavour to provide segregated waste containers on site for all materials which have a recycling market. This may be any of the following:

- Brick and concrete
- Wood
- Glass
- Paper / cardboard
- Metal
- Plasterboard
- Waste electrical equipment

Bowmer & Kirkland expect to recycle between 95% and 100% of the above materials which exceeds the best practice recycling rates published by WRAP.

Where it is impractical to provide segregated skips, due to space restrictions or volume of waste produced, then waste management contractors with a proven track record of recycling high proportions of mixed construction and demolition waste are appointed. Bowmer & Kirkland frequently experience recycling rates of over 90% from mixed construction and demolition waste achieved by our waste management contractors.

Disposal:

It is general policy not to send any waste directly to landfill sites. This is only conducted where the waste is hazardous and there are not techniques available to remediate it, e.g. asbestos. Apart from this the only wastes consigned for disposal are the small proportions of mixed construction and demolition wastes which cannot be recycled, generally because there are not recycling markets for the material.

Site Waste Management Plans

The monitoring of construction waste is undertaken through Site Waste Management Plan procedures within the company’s Environmental Management System. The Site Waste Management Plan is prepared, or evaluated if provided by the Client, by the Bowmer & Kirkland Contracts Manager. All sub-contractors are required to sign up to the SWMP during the pre-contract meeting during which the requirements are explained. All sub-contractor’s site operatives are required to attend a site induction during which the requirements of the SWMP, and B&K’s standard procedures, are explained. Additionally sub-contractors operatives are required to receive B&K standard toolbox talks.
Packaging

Take back schemes are agreed with all major suppliers of materials requiring significant packaging before an order is placed, e.g. cladding, which achieves a 100% recovery rate. Minor amounts of packaging are almost exclusively made up of recyclable materials (cardboard, metal banding, plastic etc.) which are sent for recovery. By taking these actions the net recovery rate for packaging materials is regularly above the 95% recovery stated by WRAP as best practice.

The majority of our packaging can be collected after delivery for re-use or recycling. How this works practically is that we store on site awaiting the next delivery, which is then used to return the packaging directly to the supplier without the need for an additional journey. For ad-hoc items or for the packaging received on the last delivery we recycle the packaging with a local waste management contractor to eliminate specific collections by the supplier reducing carbon emissions.

In accordance with packaging legislation, we keep a record of packaging materials which we import to monitor and reduce the effect our operations have on the UK waste stream as illustrated below.
Example Packaging Waste Report

<table>
<thead>
<tr>
<th>Description</th>
<th>Material</th>
<th>Activity</th>
<th>Usage</th>
<th>Number of Packaging Units</th>
<th>Weight</th>
<th>Package Weight by Supplier</th>
<th>Package Weight by Recipient</th>
<th>Total Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIBC</td>
<td>Polyurethane</td>
<td>Blowing</td>
<td>57</td>
<td>100</td>
<td>10</td>
<td>200</td>
<td>200</td>
<td>500</td>
</tr>
<tr>
<td>HDPE</td>
<td>Polyethylene</td>
<td>Blowing</td>
<td>78</td>
<td>150</td>
<td>15</td>
<td>225</td>
<td>225</td>
<td>450</td>
</tr>
<tr>
<td>LDPE</td>
<td>Polyethylene</td>
<td>Blowing</td>
<td>23</td>
<td>10</td>
<td>1</td>
<td>10</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>PLA</td>
<td>Polyactic Acid</td>
<td>Blowing</td>
<td>5</td>
<td>2</td>
<td>0.5</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>PET</td>
<td>Polyethylene Terephthalate</td>
<td>Blowing</td>
<td>42</td>
<td>80</td>
<td>8</td>
<td>640</td>
<td>640</td>
<td>1280</td>
</tr>
<tr>
<td>Non-PET</td>
<td>Polyethylene Terephthalate</td>
<td>Blowing</td>
<td>20</td>
<td>40</td>
<td>4</td>
<td>160</td>
<td>160</td>
<td>320</td>
</tr>
<tr>
<td>Glass</td>
<td>Glass</td>
<td>Blowing</td>
<td>1</td>
<td>20</td>
<td>2</td>
<td>40</td>
<td>40</td>
<td>80</td>
</tr>
<tr>
<td>Paper</td>
<td>Paper</td>
<td>Blowing</td>
<td>3</td>
<td>60</td>
<td>6</td>
<td>360</td>
<td>360</td>
<td>720</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Board Type</th>
<th>Weight</th>
<th>Total Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIBC</td>
<td>100</td>
<td>500</td>
</tr>
<tr>
<td>HDPE</td>
<td>150</td>
<td>450</td>
</tr>
<tr>
<td>LDPE</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>PLA</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>PET</td>
<td>80</td>
<td>1280</td>
</tr>
<tr>
<td>Non-PET</td>
<td>40</td>
<td>320</td>
</tr>
<tr>
<td>Glass</td>
<td>20</td>
<td>80</td>
</tr>
<tr>
<td>Paper</td>
<td>60</td>
<td>720</td>
</tr>
<tr>
<td>Total</td>
<td>500</td>
<td>2500</td>
</tr>
</tbody>
</table>

Packaging Waste by Materials

- FIBC: 100%
- HDPE: 30%
- LDPE: 8%
- PLA: 4%
- PET: 40%
- Non-PET: 16%
- Glass: 4%
- Paper: 24%

Packaging Waste by Usage

- Blowing: 60%
- Forming: 20%
- Molding: 10%
- Printing: 5%
- Total: 100%

Packaging Waste by Activity

- Blow Molding: 40%
- Forming: 30%
- Molding: 15%
- Printing: 9%
- Total: 100%